The Effects of Monetary Policy Shocks on Inequality in Japan

Masayuki Inui Nao Sudo Tomoaki Yamada

10 November, 2017@Gerzensee

*The views expressed are those of authors and do not necessarily reflect those of the BOJ/BIS.
Table of contents

Motivation

Data & Estimation

Model

Results

Conclusion
Motivation: growing interest on inequality

Impacts of monetary easing on inequality have attracted increasing attention recently

- Cohan (2014): “Mr. Bernanke’s extraordinary QE program, started in the wake of the financial crisis, has only widened the gulf between haves and have-nots.”

- Krugman (2014): “The belief that QE systematically favors the kinds of assets the wealthy own is wrong or at least overstated.”

- Bernanke (2015): “Monetary policy is a blunt tool which certainly affects the distribution of income and wealth, although whether the net effect is to increase or reduce inequality is not clear.”
Existing empirical studies

Empirical observations are mixed

- Coibion et al. (2017): Income and consumption inequality across U.S. households respond counter-cyclically to monetary policy shocks
- Saiki and Frost (2014): The opposite is true when using Japanese data
- Domanski et al. (2016): Unconventional monetary policy may have widened wealth inequality, in particular through an upsurge in stock prices
- Mummtaz and Theophipoulou (2016):
Questions raised

Question 1:
- Does a monetary policy affects inequalities?
 ⇒ YES

Question 2:
- What transmission mechanism works?
What we do

This paper

- Study the distributional effects of monetary policy, using the micro-level data on Japanese households.
- Draw the broad picture of the effects:
 - focusing on inequality measures of income, consumption, and wealth based on the micro-level data
 - using both the theoretical model and the data
 - using a fairly long-span data sample: periods of conventional and unconventional monetary policy regimes
Potential transmission channels

1. Earnings heterogeneity channel: **Japan**
 - the response of earnings to a monetary policy shock differs

2. Job creation channel
 - job creation/destruction following a MP shock

3. Income composition channel: **US**
 - the income composition of different income types differs

4. Portfolio channel
 - the size and composite of asset portfolio differs

5. Saving redistribution channel: Doepke and Schneider (2006)
 - a transfer from lenders to borrowers by a subsequent rise in inflation caused by monetary easing
I. Data & Estimation
Family Income and Expenditure Survey (FIES)

- Monthly survey on household income and expenditures
 - The number of observations: 8,000
 - Panel data: 6 months
 - Two-or-more household members only
- Focus on full-time employees (household head): 25–59
 - Self-employed, retirees and unemployed are excluded
- Construct *quarterly series* of variables on economic inequality
Definition of Variables

1. Earnings y_L
 - Sum of labor income of all household members

2. Total income y: $y_L +$ capital income + private transfer

3. Disposable income y_D: $y +$ public transfers - taxes/premiums

4. Nondurable expenditures c_{ND}
 - Housing, purchasing cars and other durables are excluded

5. Total expenditure c_T: $c_{ND} +$ durables (housing excluded)

- Equivalized by OECD equivalent scale
Time path of inequality measures
Estimation methodology

Estimate the impulse responses of inequality measures to a monetary policy shock, using the LLP by Jordà (2005):

\[Y_{t+h} - Y_t = \alpha_h + \Pi_h(L) M_t + \varepsilon_{t+h} \]

- inequality at \(t+h \)
- innovation

\[M_t = \begin{bmatrix} \Delta TFP_t \\ Factor_t \\ \Delta R_t \end{bmatrix} \xleftarrow{} \text{Monetary policy variable} \]

- Advantages of LLP:
 - Robustness to model misspecifications: choice of explanatory variables and the number of lags
 - Flexibility of model specifications
Monetary policy instrument

• Baseline: 1981Q1-1998Q4, Shadow rate: after 1999Q1
Monetary policy instrument

- Baseline: 1981Q1-1998Q4, Shadow rate: after 1999Q1
Responses of inequality measures: Baseline
U.S. Economy

Figure 4 in Coibion et al. (2017)
Channel through job creation

(1) # of unemployed HH heads

(2) The adjusted Gini of earnings
Responses of inequality: 1981-2008
Changes in responses of earnings inequality over time

(1) Variance of log

(2) Gini coefficient

(3) P90-P10 ratio
Empirical observations

Observation 1:

• Impact of expansionary monetary policy on income inequality is procyclical, arises mainly from procyclical response of earnings inequality. ⇒ Earnings heterogeneity channel
• Once-prevailing distributional effects diminish during 2000s
• Possibility that a decline in earnings inequality due to job creation channel counters its rise from earnings heterogeneity channel

Observation 2:

• Transmission of income inequality to consumption inequality is less than one-to-one
Accounting for observations

To address these observations, we employ three toolkits:

1. Two-sector DSGE model with attached labor inputs
 ○ illustrate how the distributional effects of monetary policy change with the structure of the economy

2. Industry-level aggregate data sets

3. Micro-level data on households’ financial assets and liabilities
 ○ check whether the model’s predictions accord with the data
II. Model
Motivation

Data & Estimation

Model

Results

Conclusion

Literature: Theory

Models of inequality:

- Monetary policy shock:

- Fiscal policy:
 - Oh and Reis (2012), McKay and Reis (2015)

- Income inequality and Pareto distribution:
 - Gabaix et al. (2016)

- Business cycle and heterogeneity:
 - Challe, Matheron, Ragot, and Rubio-Ramirez (2015)

- Mechanism behind earnings inequality in HANK
 \Rightarrow idiosyncratic risks (stochastic, but exogenous)
Our model

- **Two production sectors** (X and Z)
 - each of which has final goods firms and intermediate goods firms
 - consumption composite consists of goods X and goods Z

- **Two households** (X and Z)
 - each of which has two types of members: “attached” and “mobile”
 - “Attached” supplies its labor inputs to one of two sectors
 - “Mobile” can supply its labor inputs to both sectors
Objectives of households

- Each type of households (X and Z) maximizes:

\[
U_{s,t} = \mathbb{E}_t \left[\sum_{q=0}^{\infty} \beta^q u(C_{s,t+q}, C_{s,t+q-1}, N_{s,t+q}, H_{s,t+q}) \right]
\]

\[
u(\cdot, \cdot, \cdot, \cdot, \cdot) = \log(C_{s,t+q} - bC_{s,t+q-1}) - \theta \frac{N_{s,t+q}^{1+\eta}}{1 + \eta} - \phi \frac{H_{s,t+q}^{1+\eta}}{1 + \eta}
\]

- \(N\): attached labor input, \(H\): mobile labor input
- \(\beta\): discount factor, \(C\): consumption, \(b\): habit
Budget constraint

• For $s = X, Z$, the budget constraint:

$$C_{s,t} + \frac{B_{s,t}}{P_t} \geq \left[W_{s,t} \frac{N_s,t}{P_t} + \frac{W_t}{P_t} H_s,t + \left(\frac{\Pi_{X,t} + \Pi_{Z,t}}{P_t} \right) \gamma \Pi_s + \left(\frac{R_{X,t} K_X + R_{Z,t} K_Z}{P_t} \right) \gamma K_s \right. + R_{t-1} \frac{B_{s,t-1}}{P_t} + \kappa_B \left(\frac{B_{s,t}}{P_t} \right)^2,$$

○ $\gamma \Pi_s$: share of dividends, γK_s: share of capital stock
○ κ_B: adjustment costs of bond holding

• Capital stock is fixed at some level
Firm’s price setting and gross output

- In sector X, the intermediate firm i choose the prices to solve:

$$
\max_{P_{X,t}(i)} \mathbb{E} \left[\sum_{q=0}^{\infty} \beta^{t+q} \frac{\Lambda_{t+q}}{\Lambda_t} \frac{\Pi_{t+q,X(i)}}{P_{t+q}} \right]
$$

- subject to

$$
\Pi_{X,t+q,X(i)} = P_{X,t+q}(i)x_{t+q}(i) - MC_{X,t+q}(i)x_{t+q}(i)
$$

$$
- \frac{\kappa_X}{2} \left(\frac{P_{X,t+q}(i)}{P_{X,t+q-1}(i)} - 1 \right)^2 P_{X,t+q}X_{t+q},
$$

$$
x_t(i) = AN_{X,t}(i)^{\alpha\mu} U_{X,t}(i)^{\alpha(1-\mu)} K_{X,t}(i)^{1-\alpha}
$$
Rest of the model

- Production technology of gross output:

\[\bar{X}_t = \left[\int_0^1 x_t(i)^{1-\frac{1}{\varepsilon}} di \right]^{\frac{\varepsilon}{\varepsilon-1}} \]

- The *aggregator* constructs the composite of consumption goods using the aggregate technology

\[C_t = X_t^\rho Z_t^{1-\rho} \]

- Monetary policy:

\[\log R_t = \rho_n \log R_{t-1} + (1 - \rho_n) \varphi \log \pi_t + \varepsilon_{R,t} \]
Motivation

Data & Estimation

Model

Results

Conclusion

Setup

• Assume that $\rho > 1 - \rho$ and $\kappa_X > \kappa_Z$
• Other parameters are symmetric
• Then,
 ○ X receives *higher earnings* than Z at steady state
 ○ Monetary policy affects two sectors *differently* around steady state
Expansionary monetary policy shock

The Effects of Monetary Policy Shocks on Inequality in Japan

M. Inui, N. Sudo and T. Yamada
Labor market flexibility: $\mu \in \{0.4, 0.6, 0.8\}$

The Effects of Monetary Policy Shocks on Inequality in Japan

M. Inui, N. Sudo and T. Yamada
Labor market flexibility in Japan

(1) Proportion of temporary worker

- Labor force survey
- Monthly labor survey

(2) Labor turnover ratio
Transmission to consumption inequality

- Why didn’t consumption inequality increase as much as income inequality?
 - Responses of consumption of households are all weak?
 - Or other possible explanations?
Responses of consumption and the MPC

- by income quintiles
Transmission to consumption inequality

- Why is the MPC conditional on monetary policy shocks higher in the low income quintile?
 1. Distributional effects via financial asset holdings
 2. Difference in consumption behavior across households
Distribution of financial assets matters

• $\gamma K_X \in \{0.4, 0.5, 0.6\}$
Empirically and theoretically study how monetary policy shocks are transmitted to inequality.

- Findings:
 - Distributional effects of monetary policy were once present, but have become statistically insignificant during the 2000s.
 - Transmission of income inequality to consumption inequality is minor.

- Takeaways:
 - Labor market flexibility is central to the dynamics of income inequality after the monetary policy shocks.
 - Distributions of financial assets and liabilities don’t play a significant role.
Danke schön!
Appendix Figures
Responses of macro variables

(1) GDP
(2) Investment
(3) Consumption
(4) Price Level
(5) Stock Price
(6) Labor Income
(7) Capital Income
(8) Unemployed

The Effects of Monetary Policy Shocks on Inequality in Japan

M. Inui, N. Sudo and T. Yamada
Cross-firm heterogeneity to earnings inequality: baseline
Cross-firm heterogeneity to earnings inequality: 1981-2008
Data Details
Data Details

Definition of Variables

• Labor income y:
 ○ sum of monthly labor income of household members, which include household head, his/her spouse and other household members

• Nondurable expenditure c:
 ○ food; repair and maintenance of houses; fuel, light and water charges; domestic utensils, non-durable goods, and services; clothing and footwear; medical care; transportation and communication, excluding purchase of vehicles and bicycles; education; culture and recreation, excluding recreational durable goods; and other consumption expenditure, excluding remittance
Adjusted Gini

Adjusted Gini coefficient

\[G^* = \frac{\sum_{i=1}^{\tilde{N}} \sum_{j=1}^{\tilde{N}} |x_i - x_j|}{2\tilde{N} \sum_{i=1}^{\tilde{N}}} = G \frac{N}{\tilde{N}} + \frac{\tilde{N} - N}{\tilde{N}} \]

- Assumption: earnings of unemployed = 0