Forward Guidance without Common Knowledge

George-Marios Angeletos* Chen Lian**

November 9, 2017

* MIT and NBER, ** MIT

- How does the economy respond to news about the future?
 - e.g., news about future interest rates or government spending
- Key mechanisms:
 - forward-looking expectations (e.g., of inflation and income)
 - general-equilibrium effects (Keynesian multiplier, π-y feedback)

- How does the economy respond to news about the future?
 - e.g., news about future interest rates or government spending
- Key mechanisms:
 - forward-looking expectations (e.g., of inflation and income)
 - general-equilibrium effects (Keynesian multiplier, π-y feedback)
- Standard: RE with CK
- This paper: RE without CK

- Removing CK reduces
 - responsiveness of forward-looking expectations
 - potency of GE effects (Keynesian multipliers etc)
- Effects increase with horizon
 - it is <u>as if</u> agents apply extra discounting on future outcomes

- Removing CK reduces
 - responsiveness of forward-looking expectations
 - potency of GE effects (Keynesian multipliers etc)
- Effects increase with horizon
 - it is <u>as if</u> agents apply extra discounting on future outcomes
- Application to ZLB context
 - arrest response of AD to news about interest rates
 - arrest response of inflation to news about marginal costs
 - lessen forward guidance puzzle
 - offer rationale for the front-loading of fiscal stimuli
 - ...

- 1. Recast IS and NKPC as Dynamic Beauty Contests
- 2. Show GE Attenuation and Horizon Effects
- 3. Application to Forward Guidance and Fiscal Stimuli
- 4. Comparison to Related Work that Drops RE

Mapping the IS and the NKPC to Dynamic Beauty Contests

- Starting point: textbook NK model
- Main departure: remove CK of innovations in fundamentals/policy
- Auxiliary: enough "noise" to prevent revelation through prices
 - variant with similar results: rational inattention
- Key friction: uncertainty about how others will respond
 - uncertainty about future inflation and income
 - not uncertainty about the fundamentals/policy per se
 - to understand how it matters \rightarrow IS and NKPC as beauty contests

$c_t = -E_t[r_{t+1}] + E_t[c_{t+1}]$

- Key implication: c = f (expected path of r)
 - implication robust to borrowing constraints (e.g., McKay et al)
 - even though the aggregate Euler equation itself is different

$$\boldsymbol{c_{t}} = -\left\{\sum_{k=1}^{+\infty} \beta^{k-1} \bar{E}_{t}[\boldsymbol{r_{t+k}}]\right\} + (1-\beta) \left\{\sum_{k=1}^{+\infty} \beta^{k-1} \bar{E}_{t}[\boldsymbol{c_{t+k}}]\right\}$$

- Defines a dynamic beauty contest among the consumers
- Key implication: $c \neq f(expected path of r)$. Instead, HOB matter.

 $\pi_t = mc_t + \beta E_t \left[\pi_{t+1} \right]$

• Key implication: $\pi = f$ (expected path of *mc*)

$$\pi_{t} = mc_{t} + \left\{ \sum_{k=1}^{+\infty} \left(\beta\theta\right)^{k} \bar{E}_{t}^{f}[mc_{t+k}] \right\} + \frac{1-\theta}{\theta} \left\{ \sum_{k=1}^{+\infty} \left(\beta\theta\right)^{k} \bar{E}_{t}^{f}[\pi_{t+k}] \right\}$$

- Defines a dynamic beauty contest among the firms
- Key implication: $\pi \neq f(expected \text{ path of } mc)$. Instead, HOB matter

- So far: represent IS and NKPC as dynamic beauty contests
- What's next: the beauty of dynamic beauty contests!
 - consider a more abstract setting (nests other applications too)
 - develop broader insights
 - apply insights to context of interest
- Note: Higher Order Beliefs = a window to Rational Expectations

Attenuation and Horizon Effects in Dynamic Beauty Contests

An Abstract Dynamic Beauty Contest

• Consider models in which the following Euler-like condition holds:

$a_{i,t} = \theta_t + \gamma E_{it}[a_{i,t+1}] + \alpha E_{it}[a_{t+1}]$

- $\theta_t = \text{fundamental}, a_{it} = \text{individual outcome}, a_t = \text{aggregate outcome}$
- $\gamma > 0$ parameterizes PE effects, $\alpha > 0$ parameterizes GE effects

An Abstract Dynamic Beauty Contest

• Consider models in which the following Euler-like condition holds:

 $a_{i,t} = \theta_t + \gamma E_{it}[a_{i,t+1}] + \alpha E_{it}[a_{t+1}]$

- $\theta_t =$ fundamental, $a_{it} =$ individual outcome, $a_t =$ aggregate outcome
- $\gamma > 0$ parameterizes PE effects, $\alpha > 0$ parameterizes GE effects
- Iterate over t and aggregate over $i \Rightarrow$ dynamic beauty contest

$$\mathbf{a}_{t} = \theta_{t} + \gamma \left\{ \sum_{k=1}^{+\infty} \gamma^{k-1} \bar{E}_{t}[\boldsymbol{\theta}_{t+k}] \right\} + \alpha \left\{ \sum_{k=1}^{+\infty} \gamma^{k-1} \bar{E}_{t}[\mathbf{a}_{t+k}] \right\}$$

An Abstract Dynamic Beauty Contest

• Consider models in which the following Euler-like condition holds:

 $a_{i,t} = \theta_t + \gamma E_{it}[a_{i,t+1}] + \alpha E_{it}[a_{t+1}]$

- $\theta_t =$ fundamental, $a_{it} =$ individual outcome, $a_t =$ aggregate outcome
- $\gamma > 0$ parameterizes PE effects, $\alpha > 0$ parameterizes GE effects
- Iterate over t and aggregate over $i \Rightarrow$ dynamic beauty contest

$$\boldsymbol{a}_{t} = \boldsymbol{\theta}_{t} + \gamma \left\{ \sum_{k=1}^{+\infty} \gamma^{k-1} \bar{E}_{t}[\boldsymbol{\theta}_{t+k}] \right\} + \alpha \left\{ \sum_{k=1}^{+\infty} \gamma^{k-1} \bar{E}_{t}[\boldsymbol{a}_{t+k}] \right\}$$

• With $CK \Rightarrow$ representative-agent Euler

$$a_t = \theta_t + (\gamma + \alpha) E_t[a_{t+1}]$$

- How does a_t responds to news about θ_{t+T} ?
 - *c* response to news about interest rates
 - π inflation response to news about marginal costs
- Formally:
 - hold $heta_{ au}$ constant (say, at 0) for all au
 eq t + T
 - treat θ_{t+T} as a random variable (Normally distributed with mean 0)
 - study $\phi_T \equiv$ projection coefficient of a_t on $\overline{E}_t[\theta_{t+T}]$

The Role of HOB

- By iterating, we can express a_t as a linear function of
 - 1st-order beliefs: $\overline{E}_t \left[\theta_{t+\tau} \right]$
 - 2nd-order beliefs: $\overline{E}_t \left[\overline{E}_\tau \left[\theta_{t+\tau} \right] \right] \quad \forall \tau : t < \tau < t + T$
 - 3rd-order beliefs: $\overline{E}_t \left[\overline{E}_{\tau'} \left[\overline{E}_{\tau'} \left[\theta_{t+\tau} \right] \right] \right] \quad \forall \tau, \tau' : t < \tau < \tau' < t + T$
 - and so on, up to beliefs of order $\ensuremath{\mathcal{T}}$

The Role of HOB

- By iterating, we can express a_t as a linear function of
 - 1st-order beliefs: $\overline{E}_t \left[\theta_{t+T} \right]$
 - 2nd-order beliefs: $\overline{E}_t \left[\overline{E}_\tau \left[\theta_{t+\tau} \right] \right] \quad \forall \tau : t < \tau < t + T$
 - 3rd-order beliefs: $\overline{E}_t \left[\overline{E}_{\tau'} \left[\overline{E}_{\tau'} \left[\theta_{t+\tau} \right] \right] \right] \quad \forall \tau, \tau' : t < \tau < \tau' < t + T$
 - and so on, up to beliefs of order T
- With CK, HOB collapse to FOB, the "usual" scenario applies, and

 $\phi_T^* = (\gamma + \alpha)^T$

- Without CK, things are more tricky: ϕ_T hinges on
 - 1. how HOB co-move with $\overline{E}_t[\theta_{t+\tau}]$
 - 2. how HOB load in a_t

1. HOB vary less than FOB

 "unless I am 100% sure that you heard and paid attention to the news, I am likely to think that your beliefs moved less than mine"

1. HOB vary less than FOB

- "unless I am 100% sure that you heard and paid attention to the news, I am likely to think that your beliefs moved less than mine"
- 2. Longer horizons raise the relative importance of HOB
 - the distant future enters through multiple rounds of GE effects:

$$\theta_{t+T} \rightarrow a_{t+T} \rightarrow a_{t+T-1} \rightarrow ... \rightarrow a_{t+1} \rightarrow a_t$$

- but this is akin to ascending the hierarchy of beliefs!
- longer horizons therefore raise the load of HOB on outcomes

Results

- 1. Attenuation at any horizon
 - ϕ_T bounded between PE effect and CK counterpart:

$$\gamma^T < \phi_T < \phi_T = (\gamma + \alpha)^T$$

"CK maximizes GE effect"

Results

- 1. Attenuation at any horizon
 - ϕ_T bounded between PE effect and CK counterpart:

$$\gamma^T < \phi_T < \phi_T = (\gamma + \alpha)^T$$

- "CK maximizes GE effect"
- 2. Attenuation effect increases with the horizon
 - ϕ_T/ϕ_T^* decreases in T

Results

- 1. Attenuation at any horizon
 - ϕ_T bounded between PE effect and CK counterpart:

$$\gamma^T < \phi_T < \phi_T = (\gamma + \alpha)^T$$

- "CK maximizes GE effect"
- 2. Attenuation effect increases with the horizon
 - ϕ_T/ϕ_T^* decreases in T
- 3. Attenuation effect grows without limit
 - $\phi_T/\phi_T^*
 ightarrow 0$ as $T
 ightarrow \infty$ even if noise is tiny*

- Information structure:
 - each agent receives a private Gaussian signal about θ_{t+T} at t
 - no other info arrives up to t + T, at which point θ_{t+T} becomes known
- Implication: a simple exponential structure for HOB

 $\bar{E}_t^h[\theta_{t+T}] = \lambda^{h-1} \cdot \bar{E}_t[\theta_{t+T}]$

where $\lambda \in (0,1]$ is decreasing in the amount of noise

- Back to our question: How does a_t vary with $\overline{E}_t[\theta_{t+T}]$?
- Answer: Same as in a representative-agent model with

 $a_t = \theta_t + (\gamma + \lambda \alpha) E_t[a_{t+1}]$

- GE effect reduced from α to $\lambda\alpha$
- as if myopia / extra discounting of future outcomes

Remarks and Take-Home Lessons

- Origins and interpretation of lack of CK
 - dispersed info as in Lucas, Grossman-Stigltiz, Morris-Shin, etc
 - bounded rationality in the form of "rational inattention" (Sims) and "costly contemplation" (Tirole)
 - key friction: uncertainty about responses of others
- Forget HOB, think Rational Expectations
 - the analyst has to think HOB, the agents inside the model do not!
 - we have merely "liberated" RE from the auxiliary CK restriction
- Take-home lessons
 - GE effects are less potent
 - economy may react as if agents were myopic
 - especially vis-a-vis news at more distant horizons

Going back to the NK model

- Demand block (IS):
 - attenuate GE feedback b/w c and y (Keynesian multiplier)
 - anchor income expectations
 - arrest response of c to news about future real rates
 - as if extra discounting in the Euler condition
- Supply block (NKPC):
 - attenuate GE feedback from future to current $\boldsymbol{\pi}$
 - anchor inflation expectations
 - arrest response of π to news about future marginal costs
 - as if extra discounting in the NKPC

- Caveat to applying preceding lessons:
 - GE feedback b/w demand (IS) and supply (NKPC)
 - joint endogeneity of real rates and real marginal cost
- Next: deal with this caveat
- Obtain lessons for forward guidance, fiscal stimuli, etc

Forward Guidance and Fiscal Stimuli

ZLB and Forward Guidance

- Let T index length of liquidity trap and horizon of FG
 - t < T 1: ZLB binds and $R_t = 0$ for all
 - $t \ge T + \Delta$: "natural level" and $y_t = \pi_t = 0$
 - let $\Delta = 1$ for simplicity
- Forward guidance
 - policy announcement at t = 0 of likely R_T
 - modeled as $z = R_T + noise$
- Our twist: lack of CK about z
 - credibility = precision of z, or how much $\overline{E}_0[R_T]$ varies with z
 - we bypass this and focus on how y_0 varies with $\overline{E}_0[R_T]$
 - think of this as studying the response of spending and inflation relative to the response of the term structure of interest rates

Leading Example

- Information structure
 - initial private signal

$$x_i = z + \epsilon_i, \quad \epsilon_i \sim \mathcal{N}(0, \sigma_{\epsilon}^2)$$

- ϵ_i can be interpreted as the product of rational inattention
- limit with no endogenous learning (large markup and wage shocks)
- Degree of CK indexed by $\lambda \in (0,1]$

 $\bar{\mathbb{E}}^{h}[R_{T}] = \lambda^{h-1} \bar{\mathbb{E}}^{1}[R_{T}]$

- consumers vs firms: λ_c vs λ_f
- CK benchmark nested with $\lambda_c = \lambda_f = 1$

- Question: How does y_0 vary with $\overline{E}_0[R_T]$
- Answer: There exists a function ϕ such that

$$y_0 = -\phi\left(\lambda_c, \lambda_f; T\right) \cdot \bar{E}_0[R_T]$$

- standard: ϕ^* increases with T and explodes as $T \to \infty$
- here: ϕ vs ϕ^*

- Attenuation for any horizon
 - three GE effects at work:
 - (1) inside IS: income-spending feedback
 - (2) inside NKPC: inflation-inflation feedback
 - (3) across two blocks: inflation-spending feedback
 - all three attenuated; but most quantitative bite for (2) and (3)
- Attenuation effect increases with horizon
 - ϕ/ϕ^* decreases in T
 - $\phi/\phi^* \to 0$ as $T \to \infty$, even if $\lambda \approx 1$
 - for λ_c small enough, $\phi \to {\sf 0}$ in absolute, not only relative to ϕ^*

A Numerical Illustration

- Modest friction: 25% prob that others failed to hear announcement
- All other parameters as in Gali's textbook

- Standard NK prediction:
 - fiscal stimuli work because they trigger inflation
 - better to back-load so as to "pile up" inflation effects
- Our twist:
 - such piling up = iterating HOB
 - not as potent when CK assumption is dropped
 - rationale for front-loading: "minimize coordination friction"

Companion Work

- Flexible formalization of GE attenuation
- Bridge gap between macro effects and micro elasticities
- Compare removing CK to dropping RE

Dropping RE vs Removing CK

- Cognitive discounting as in Gabaix (2016)
 - by assumption, subjective beliefs move less than rational expectations
 - can capture GE attenuation, but free to assume opposite
- Level-k Thinking as in Farhi and Werning (2017)
 - agents form beliefs by iterating on best responses, but stop before reaching the fixed point (which gives RE solution)
 - attenuation when GE amplifies PE, but not when GE offsets PE
- Our approach does not face these difficulties, plus:
 - immunity to Lucas critique
 - no conundrum with what agents do when they see that the actual outcomes are inconsistent with their beliefs
 - implies not only discounting but also backward-lookingness

Angeletos and Huo, "Anchored Expectations"

- Incomplete info = discounting + backward looking
- Application: NKPC
 - standard (without price indexation)

$$\pi_t = \kappa x_t + \beta \mathbb{E}_t[\pi_{t+1}]$$

• with incomplete info, it is as if

$$\pi_t = \kappa' x_t + \beta' \mathbb{E}_t[\pi_{t+1}] + \gamma \pi_{t-1}$$
$$\kappa' < \kappa, \quad \beta' < \beta, \quad \gamma > 0$$

- i.e., micro-foundation of hybrid NKPC
- Other applications: micro-foundation of C habit and IAC

Conclusion

- Standard modeling has "overstated"
 - responsiveness of forward-looking expectations
 - potency of GE effects
- Applications:
 - lessen FG puzzle
 - rationale for front-loading fiscal stimuli
 - sluggish AD response to MP
 - anchored inflation expectations
 - Ricardian Equivalence
 - • • •